Abstract
ABSTRACT We develop a new analysis approach towards identifying related radio components and their corresponding infrared host galaxy based on unsupervised machine learning methods. By exploiting Parallelized rotation and flipping INvariant Kohonen maps (pink), a self-organizing map (SOM) algorithm, we are able to associate radio and infrared sources without the a priori requirement of training labels. We present an example of this method using 894 415 images from the Faint Images of the Radio-Sky at Twenty centimeters (FIRST) and Wide-field Infrared Survey Explorer (WISE) surveys centred towards positions described by the FIRST catalogue. We produce a set of catalogues that complement FIRST and describe 802 646 objects, including their radio components and their corresponding AllWISE infrared host galaxy. Using these data products, we (i) demonstrate the ability to identify objects with rare and unique radio morphologies (e.g. ‘X’-shaped galaxies, hybrid FR I/FR II morphologies), (ii) can identify the potentially resolved radio components that are associated with a single infrared host, (iii) introduce a ‘curliness’ statistic to search for bent and disturbed radio morphologies, and (iv) extract a set of 17 giant radio galaxies between 700 and 1100 kpc. As we require no training labels, our method can be applied to any radio-continuum survey, provided a sufficiently representative SOM can be trained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.