Abstract

Grid computing has recently become an important paradigm for managing computationally demanding applications, composed of a collection of services. The dynamic discovery of services, and the selection of a particular service instance providing the best value out of the discovered alternatives, poses a complex multi-attribute n:m allocation decision problem, which is often solved using a centralized resource broker. To manage complexity, this article proposes a two-layer architecture for service discovery in such Application Layer Networks (ALN). The first layer consists of a service market in which complex services are translated to a set of basic services, which are distinguished by price and availability. The second layer provides an allocation of services to appropriate resources in order to enact the specified services. This framework comprises the foundations for a later comparison of centralized and decentralized market mechanisms for allocation of services and resources in ALNs and Grids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.