Abstract

The physicochemical and oxidative stability of oil emulsion has been one of the major challenges in food industry. Factors influencing the emulsion stability have seemingly been exhaustedly elucidated, such as temperature, pH, salts, proteins, polysaccharides and digestive enzymes. Here we report the previously unrecognized influence of catalase on emulsion stability. Submicron oil-in-water fish oil emulsion was prepared by high speed homogenization in the presence of polysorbate 80. Influence of catalase on the emulsion’s stability was investigated in comparison with its deactivated version and bovine serum albumin (BSA) by visual examination, turbidity and DLS measurement and TEM observation. Catalase demulsified the emulsion instantly in a concentration-responsive manner at concentrations higher than 0.8 μmol/L, resulting a decreased turbidity, oil flocculation and precipitation of the enzyme itself. Neither BSA nor the thermally inactivated CAT caused demulsification at the same speed, indicating that CAT’s demulsification effect was attributed to its enzymatic activity rather than its general protein properties. The enlargement of oil-polysorbate droplets and precipitation of CAT were confirmed by both TEM and DLS. Furthermore, CAT’s demulsification effect was found irrelevant of the lipid oxidation. This insight into catalase’s influences on emulsion not only sheds lights on food processing and shelf-life, nutritional value and potential biological effects, but also presents an exciting challenge to elucidate the mechanism behind.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call