Abstract
Macrophage differentiation plays a pivotal role in cardiovascular diseases and many other physiological processes. However, the role of reaction oxygen species in macrophage differentiation has not been elucidated. Here, we report functional characterization of catalase, an enzyme that degrades hydrogen peroxide (H(2)O(2)), in THP-1 monocyte differentiation. Treatment of THP-1 cells with catalase was able to synergize with all-trans retinoic acid (ATRA) to enhance macrophage differentiation, demonstrated by changes of cell adherence, cell cycle arrest, nitroblue tetrazolium reduction, and expression of differentiation markers including CD68, CD11b, and matrix metalloproteinase 9 (MMP9). ATRA could stimulate retinoic acid (RA) receptor-mediated transcription, but this was not affected by catalase. However, ATRA and catalase were capable of reducing transcriptional activity mediated by peroxisome proliferator-activated receptor gamma (PPARgamma). Consistently, PPARgamma antagonists enhanced, and PPARgamma agonists inhibited MMP9 expression stimulated by ATRA and catalase in THP-1 cells. Therefore, these data indicate that catalase is able to potentiate ATRA-induced macrophage differentiation by inhibition of PPARgamma activity, underscoring an important interplay between H(2)O(2), RA, and PPARgamma in macrophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.