Abstract

Hydroxyurea reduces the incidence of painful crises in patients with sickle cell disease and has recently been approved for the treatment of this condition. A number of in vitro studies show that the oxidation of hydroxyurea results in the formation of nitric oxide, which also has drawn considerable interest as a sickle cell disease therapy. While patients on hydroxyurea demonstrate elevated levels of nitric oxide-derived metabolites, little information regarding the site or mechanism of the in vivo conversion of hydroxyurea to nitric oxide exists. Chemiluminescence detection experiments show the ability of catalase to catalyze the formation of nitrite and nitrate from hydroxyurea. Spectroscopic studies show that the reaction of hydroxyurea and catalase in the presence of a hydrogen peroxide generating system produces a ferrous-NO catalase complex. Trapping studies indicate the intermediacy of a nitroso species during this reaction. The proposed mechanism for this conversion includes initial hydrogen peroxide-dependent oxidation of hydroxyurea by catalase to form the nitroso species, hydrolysis of this nitroso species to produce nitroxyl, and reductive nitrosylation of the ferric heme of catalase by nitroxyl to yield the ferrous-NO catalase complex. Addition of Angeli's salt, a nitroxyl donor, to ferric catalase also produces the ferrous-NO catalase complex. Spectroscopic studies show that the ferrous-NO catalase complex releases nitric oxide as judged by the oxyhemoglobin assay and an NO specific EPR specific trap. These results demonstrate nitric oxide production from the ferric catalase oxidation of nitroxyl and identify a catalase-mediated pathway as a potential source of nitric oxide production from hydroxyurea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.