Abstract

Catabolite repression of the Bacillus stearothermophilus No. 236 xynA gene, encoding an extracellular xylanase, was investigated in this work. Expression of the xynA gene in the B. stearothermophilus strain was found to be subject to glucose catabolite repression, and the level of repression was about 50-fold when the relative amounts of xynA transcript synthesized on different carbon sources were analyzed. The experiments with the B. subtilis MW15 strains carrying plasmids containing the xynA::aprA fusion gene showed that the cloned xynA gene did not require any specific carbon source for its induction. Nevertheless, the expression of the cloned gene was repressed by the presence of glucose. From the nucleotide sequence of the cloned xynA gene, we found two potential catabolite responsive elements (cre) within its reading frame region (cre-1: nucleotides +160 to +173 and cre-2: +173 to +186). Furthermore, by using various deletion derivatives of the xynA::aprA fusion plasmid (pMGW23), we suggested that only the cre-2 element might play a role in the glucose catabolite repression. Repression level of the xynA gene expression in the recombinant B. subtilis strain was estimated to be about 3-fold by analysis of the amounts of xynA transcript.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.