Abstract

The phenomenon of glucose catabolite repression was studied in Escherichia coli mutants unable to transport this carbohydrate. The pts I,H mutant P34 was much less sensitive to permanent and transient repressive effect of glucose on beta-galactosidase synthesis than parental type. The 1103 mutant with lack of enzyme 1 of the phosphoenolpyruvate-dependent phosphotransferase system (ptsI) behaves as well as P34 mutant after addition of glucose to casamino acids mineral medium. But in minimal medium with succinate as the sole source of carbon cells of the 1103 mutant (in accordance with the data of Perlman and Pastan, 1969) show hightened sensibility to transient glucose repression. The effect of hypersensibility disappears when the lacI mutation rendering the beta-galactosidase synthesis to costitutivity is introduced in 1103 mutant. It is shown that the hightened sensibility of beta-galactosidase synthesis to glucose transient repression in 1103 mutant is not an effect of the pts mutation and most probably is due to "inducer exclusion" of the lac operon. It is also shown that if one introduces the P34 mutation in strain devoided of one of the enzymes II for glucose (gptA) (and due to this resistant to glucose catabolite repression) then the level of resistance in double mutant does not increase in spite of considerable supression of 14C glucose accumulation. It is discussed the role of separate components of Escherichia coli K12 glucose transport system in realization of the phenomenon of catabolite repression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call