Abstract

Saccharomyces cerevisiae uses glucose preferentially to any other carbon source and this preferential use is ensured by control mechanisms triggered by glucose. The consensus is that inactivation of sugar transporters other than glucose transporters is one of these mechanisms. This inactivation is called catabolite inactivation because of its apparent analogy with the catabolite inactivation of gluconeogenic enzymes. Recently, doubt has been cast on the role of the inactivation of the sugar transporters in controlling the use of glucose because this inactivation neither is specifically triggered by glucose nor specifically affects non-glucose sugar transporters. Based on the fact that this inactivation has been almost exclusively investigated using nitrogen-starved cells, it has been proposed that it might be due to the stimulation of the protein turnover that follows nitrogen starvation. The results obtained in this work support this possibility since they show that the presence of a nitrogen source in the medium strongly inhibited the inactivation. It is concluded that, in growing yeast cells, the contribution of the inactivation by glucose of the non-glucose sugar transporters to the preferential use of glucose is much lower than generally believed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.