Abstract

Antimicrobial resistance is a serious public health threat worldwide today. Escherichia coli is known to resist low doses of antibiotics in the presence of sodium salicylate and related compounds by mounting non-heritable transient phenotypic antibiotic resistance (PAR). In the present study, we demonstrate that Bgl+ bacterial strains harboring a functional copy of the β-glucoside (bgl) operon and are actively hydrolyzing plant-derived aromatic β-glucosides such as salicin show PAR to low doses of antibiotics. The aglycone released during metabolism of aromatic β-glucosides is responsible for conferring this phenotype by de-repressing the multiple antibiotics resistance (mar) operon. We also show that prolonged exposure of Bgl+ bacteria to aromatic β-glucosides in the presence of sub-lethal doses of antibiotics can lead to a significant increase in the frequency of mutants that show heritable resistance to higher doses of antibiotics. Although heritable drug resistance in many cases is known to reduce the fitness of the carrier strain, we did not see a cost associated with resistance in the mutants, most of which carry clinically relevant mutations. These findings indicate that the presence of the activated form of the bgl operon in the genome facilitates the survival of bacteria in environments in which both aromatic β-glucosides and antibiotics are present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.