Abstract

Articular chondrocyte senescence is responsible, at least in part, for the increased incidence of osteoarthritis (OA) with increased age. Recently, it was suggested that caveolin 1, a 21-24-kd membrane protein, participates in premature cellular senescence. Caveolin 1 is the principal structural component of caveolae, vesicular invaginations of the plasma membrane. This study was undertaken to investigate whether the catabolic factors oxidative stress and interleukin-1beta (IL-1beta) induce features of premature senescence of articular chondrocytes through up-regulation of caveolin 1 expression. Caveolin 1 expression was investigated in human OA cartilage by real-time polymerase chain reaction and in rat OA cartilage by immunohistologic analysis. We studied whether IL-1beta and H2O2 induce caveolin 1 expression in OA chondrocytes and analyzed the relationship between cellular senescent phenotypes and caveolin 1 expression in human chondrocytes. In human and rat OA articular cartilage, caveolin 1 positivity was associated with cartilage degeneration. Both IL-1beta and H2O2 up-regulated caveolin 1 messenger RNA and protein levels, and both treatments induced marked expression of senescent phenotypes: altered cellular morphology, cell growth arrest, telomere erosion, and specific senescence-associated beta-galactosidase activity. Caveolin 1 overexpression induced p38 MAPK activation and impaired the ability of chondrocytes to produce type II collagen and aggrecan. In contrast, down-regulation of caveolin 1 with antisense oligonucleotide significantly inhibited the features of chondrocyte senescence induced by catabolic factors. Caveolin 1 induction and stresses with both IL-1beta and H2O2 up-regulated p53 and p21 and down-regulated phosphorylated retinoblastoma (Rb), suggesting that the p53/p21/Rb phosphorylation pathway, as well as prolonged p38 MAPK activation, may mediate the features of chondrocyte senescence induced by stress. Our findings suggest that IL-1beta and oxidative stress induce features of premature senescence in OA chondrocytes, mediated, at least in part, by stress-induced caveolin 1 expression. This indicates that caveolin 1 plays a role in the pathogenesis of OA via promotion of chondrocyte down-regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call