Abstract
The morphologies of various surface defects on strip steel suffer from oil stain, water drops, steel textures, and erratic illumination. It is still challenging to recognize defect boundary precisely from cluttered backgrounds. This article emphasizes such a fact that skip connections between encoder and decoder are not equally effective, attempts to adaptively allocate the aggregation weights that represent differentiated information entropy values in channelwise, by importing a stack of cross-attention transformer (CAT) into the encoder–decoder network (EDNet). Besides, a cross-attention refinement module (CARM) is constructed closely after the decoder to further optimize the coarse saliency maps. This newly nominated CAT-EDNet can well address the semantic gap issue among the multiscale features for its multihead attention structure. The CAT-EDNet performs best on insuring defect integrity and maintaining defect boundary details when compared with 12 state-of-the-arts, and the detection efficiency is at 28 fps even under the noise interfered scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.