Abstract
Cat species recognition holds significant potential in many fields. The primary objective of this research is to develop an automated algorithm for recognizing the presence of cats in images. The application prospects of this algorithm are diverse and include security, image search, and social media. Hence, this research has considerable practical value in various domains. In this study, we propose a cat image recognition algorithm based on the PyTorch, with ResNet50 as the foundational network architecture, and an attention mechanism (Efficient Channel Attention) integrated into the model for improved performance. We first introduced the Resnet network, and then introduced the combination of attention mechanism and Resnet in detail The proposed model achieved a 92.37% accuracy rate in classifying the 12 cat species, demonstrating its efficacy in accurately classifying and recognizing the collected images. The research conclusion of this paper has certain reference value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.