Abstract

Osteoporosis has influenced millions of people, especially postmenopausal women, which has become a big burden to the whole world. Although the diverse roles of casticin (CAS) on different diseases were identified, whether it was implicated with osteoporosis was unknown. A rat model of osteoporosis was established through dexamethasone (DEX) treatment and a cell model reflecting the osteogenic and osteoclast induction was constructed in bone marrow stromal cells (BMSCs). The calcification at the late stage of induction was measured via Alizarin Red S staining. Western blot was applied to evaluate the levels of proteins. Hematoxylin and eosin staining revealed that the number of bone trabecular in DEX-induced osteoporosis rats was decreased, while increased doses of CAS treatment elevated the number of bone trabecular. CAS treatment alleviated DEX-induced osteoporosis in rats. Moreover, we found that CAS inhibited the nuclear factor-κB/mitogen-activated protein kinase (NF-κB/MAPK) pathway. In addition, CAS promoted osteogenic differentiation of BMSCs and reduced osteoclastogenesis of bone marrow monocytes. Finally, CAS was observed to retard the receptor activator of NFκ-B ligand-induced NF-κB/MAPK pathway. CAS promoted osteogenic differentiation of BMSCs and improved osteoporosis in rats by regulating the NF-κB/MAPK pathway. This might shed a light into using CAS as a drug treating osteoporosis in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call