Abstract
We present new combinatorial results on the calculation of (Castelnuovo-Mumford) regularity of graphs. We introduce the notion of a prime graph over a field k, which we define to be a connected graph with regk(G − x) < regk(G) for any vertex x ∈ V (G). We then exhibit some structural properties of prime graphs. This enables us to provide upper bounds to the regularity involving the induced matching number im(G). We prove that reg(G) ≤ (Γ(G)+1)im(G) holds for any graph G, where Γ(G)=max{|N G [x]\N G [y]| : xy ∈ E(G)} is the maximum privacy degree of G and N G [x] is the closed neighbourhood of x in G. In the case of claw-free graphs, we verify that this bound can be strengthened by showing that reg(G)≤2im(G). By analysing the effect of Lozin transformations on graphs, we narrow the search for prime graphs into graphs having maximum degree at most three. We show that the regularity of such graphs G is bounded above by 2im(G)+1. Moreover, we prove that any non-trivial Lozin operation preserves the primeness of a graph. That enables us to generate many new prime graphs from the existing ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.