Abstract

The present paper examines Casson MHD nanofluid flow with internal heat generation and viscous dissipation of an exponentially stretching sheet. The conditions depicting the hydromagnetic flow, heat and mass transfer of a thick nanofluid over an isothermal extending sheet are tackled numerically by applying 4th order RK shooting strategy. The governing PDE’s of flow, heat and concentration profiles are transformed into an arrangement of nonlinear ODE’s by using similarity transformations. The impact of heat transfer, Prandtl number, thermpphorosis, Brownian motion and Lewis number on flow, energy, concentration profiles and physical quantities are analyzed and displayed through graphs and tables. It is observed that, the flow rate decrease with increase in magnetuc field and enhance in Eckert number both energy and mass transfer rate increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.