Abstract
We survey the Cassini magnetometer data during the deep tail orbits in 2006, and find 34 direct encounters with plasmoids. They occur as single, isolated events but also in groups of two or more plasmoids as is frequently observed at Earth . We show a case study example of three such plasmoids over three hours, where we estimate an upper limit of 5.68 GWb of flux closure, and derive a reconnection rate over this interval of 526 kV. We show the results of a superposed epoch analysis of al1 34 plasmoids indicating that, on average, plasmoids at Saturn are approix.8 min in duration and they tend toward a loop-like, as opposed to flux rope-like topology, with little or no axial core magnetic field. Our analysis shows that plasmoids at Saturn are followed by an extended interval of the post-plasmoid plasma sheet (PPPS) lasting approx.58 min. The average open magnetic flux disconnected by the continued reconnet:tion following plasmoid formation that creates the PPPS is approx.3 GWb. We calculate expected recurrence rates for plasmoids, and compare these with a derived observational recurrence rate of one plasmoid every approx.2.4 days, explaining the reasons why the spacecraft has not observed as many plasmoids as we predict will be released. We conclude that the Cassini magnetometer measurements require a combination of Vasyliunas-type closed-flux plasma sheet and Dungey-type open-flux lobe reconnection to account for the observed properties of the plasmoids and PPPS in Saturn's magnetotail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.