Abstract
The neutral nitrogen and methane measurements made by Ion and Neutral Mass Spectrometer during Cassini flybys TA, TB, and T5 in Titan's upper atmosphere and exosphere are presented. Large horizontal variations are observed in the total density, recorded to be twice as large during TA as during T5. Comparison between the atmospheric and exospheric data show evidence for the presence of a significant population of suprathermal molecules. Using a diffusion model to simultaneously fit the N2 and CH4 density profiles below 1500 km, the atmospheric structure parameters are determined, taking into account recent changes in the calibration parameters. The best fits are obtained for isothermal profiles with values 152.8 ± 4.6 K for TA, 149.0 ± 9.2 K for TB, and 157.4 ± 4.9 K for T5, suggesting a temperature ≃5 K warmer at night than at dusk, a trend opposite to that determined by solar‐driven models. Using standard exospheric theory and a Maxwellian exobase distribution, a temperature of 20 to 70 K higher would be necessary to fit the TA, TB, and egress‐T5 data above 1500 km. The suprathermal component of the corona was fit with various exobase energy distributions, using a method based on the Liouville theorem. This gave a density of suprathermals at the exobase of 4.4 ± 5.1 × 105 cm−3 and 1.1 ± 0.9 × 105 cm−3, and an energy deposition rate at the exobase of 1.1 ± 0.9 × 102 eV cm−3 s−1 and 3.9 ± 3.5 × 101 eV cm−3 s−1 for the hot N2 and CH4 populations, respectively. The energy deposition rate allowed us to roughly estimate escape rates for nitrogen of ≃7.7 ± 7.1 × 107 N cm−2 s−1 and for methane of ≃2.8 ± 2.1 × 107 CH4 cm−2 s−1. Interestingly, no suprathermal component was observed in the ingress‐T5 data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Geophysical Research: Space Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.