Abstract
Formic acid is utilized to induce esterification and chemical gelatinization in starch, particularly in the fabrication of electrospun fibers for nanomaterial production. This study investigated the impact of different concentrations (15, 20, 25, and 30 %) of cassava starch and formic acid as a solvent on the characteristics of the resultant polymeric solutions and electrospun fibers. Morphology, size distribution, thermogravimetric properties, diffraction patterns, and relative crystallinity were evaluated for the electrospun fibers. The amylose content of starch varied from 16.5 to 23.7 %, decreasing with esterification, achieving a degree of substitution of approximately 0.93. The solution-rheology exhibited elastic behavior, with viscosity increasing as starch concentration increased, hindering the fabrication of fibers at 25 and 30 % starch. Successful electrospun fibers were formed using 15 % and 20 % starch, displaying homogeneous morphologies with mean diameters of 165 nm and 301 nm, respectively. Esterification influenced thermogravimetric properties, leading to fibers with reduced degradation temperatures and mass loss compared to native starches. The electrospun fibers presented an amorphous structure, indicating a drastic reduction in relative crystallinity from 35.2 % in native starch to 8.5 % for esterified starches. This study highlights the intricate relationship between starch concentration, esterification, and solution viscosity, affecting the electrospinnability and properties of starch-polymeric solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.