Abstract

BackgroundFollowing our 2015 elucidation of the CASP1/NALP3 inflammasome mechanism of glucocorticoid (GC)-resistance in pediatric acute lymphoblastic leukemia (ALL) patients, we engineered a cell-based CASP1/NALP3 reporter system suitable for high-throughput screening (HTS) of small molecule libraries, with the purpose of identifying compounds capable of inhibiting the CASP1/NALP3 inflammasome and synergizing with GC drugs for the treatment of GC-resistant ALL patients and various autoinflammatory diseases.MethodsA Dox-controlled system was utilized to induce the expression of the ASC transgene in HEK293 cells while simultaneously overexpressing NLRP3 and CASP1. ASC/CASP1/NALP3 inflammasome complex formation was confirmed by co-immunoprecipitation (co-IP) experiments. Next, a LV fluorescence-based biosensor (CASPorter) was transduced in the HEK293-iASC-NLRP3/CASP1 cell line to monitor the real-time activation of CASP1/NALP3 inflammasome in live cells. The applicability and effectiveness of the CASPorter cell line were tested by co-treatment with Dox and four known CASP1/NLRP3 inhibitors (MCC950, Glyburide, VX-765 and VRT-043198). Inflammasome activation and inhibitions were assessed by Western blotting, fluorescence microscopy and flow cytometry (FC) methods.ResultsDox treatment significantly induced ASC expression and increased levels of cleaved and catalytically active CASP1, co-IPs further demonstrated that CASP1 was pulled-down with NLRP3 in HEK293-iASC-NLRP3/CASP1 cells after induction of ASC by Dox treatment. In HEK293-iASC-NLRP3/CASP1-CASPorter cell system, cleavage of the CASP1 consensus site (YVAD) in the CASPorter protein after Dox treatment causing excitation/emission of green fluorescence and the 71% GFP+ cell population increase quantified by FC (78.1% vs 6.90%). Dox-induced activation of the NLRP3 inflammasome was dose-dependently inhibited by Dox co-treatment with four known CASP1/NLRP3 inhibitors.ConclusionWe have established a cell-based CASP1/NLRP3 inflammasome model, utilizing a fluorescence biosensor as readout for qualitatively observing and quantitatively determining the activation of caspase 1 and NLRP3 inflammasomes in living cells and easily define the inhibitory effect of inhibitors with high efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.