Abstract

ABSTRACTCandida albicans and Staphylococcus aureus are pathogens commonly isolated from bloodstream infections worldwide. While coinfection by both pathogens is associated with mixed biofilms and more severe clinical manifestations, due to the combined expression of virulence and resistance factors, effective treatments remain a challenge. In this study, we evaluated the activity of echinocandins, especially caspofungin, against mixed biofilms of C. albicans and methicillin-resistant (MRSA) or methicillin-susceptible S. aureus (MSSA) and their effectiveness in vivo using the Galleria mellonella coinfection model. Although caspofungin (CAS) and micafungin (MFG) inhibited the mixed biofilm formation, with CAS exhibiting inhibitory activity at lower concentrations, only CAS was active against preformed mixed biofilms. CAS significantly decreased the total biomass of mixed biofilms at concentrations of ≥2 μg/ml, whereas the microbial viability was reduced at high concentrations (32 to 128 μg/ml), leading to fungus and bacterium cell wall disruption and fungal cell enlargement. Notably, CAS (20 or 50 mg/kg of body weight) treatment led to an increased survival and improved outcomes of G. mellonella larvae coinfected with C. albicans and MRSA, since a significant reduction of fungal and bacterial burden in larval tissues was achieved with induction of granuloma formation. Our results reveal that CAS can be a therapeutic option for the treatment of mixed infections caused by C. albicans and S. aureus, supporting additional investigation.IMPORTANCE Infections by microorganisms resistant to antimicrobials is a major challenge that leads to high morbidity and mortality rates and increased time and cost with hospitalization. It was estimated that 27 to 56% of bloodstream infections by C. albicans are polymicrobial, with S. aureus being one of the microorganisms commonly coisolated worldwide. About 80% of infections are associated with biofilms by single or mixed species that can be formed on invasive medical devices, e.g., catheter, and are considered a dissemination source. The increased resistance to antimicrobials in bacterial and fungal cells when they are in biofilms is the most medically relevant behavior that frequently results in therapeutic failure. Although there are several studies evaluating treatments for polymicrobial infections associated or not with biofilms, there is still no consensus on an effective antimicrobial therapy to combat the coinfection by bacteria and fungi.

Highlights

  • IMPORTANCE Infections by microorganisms resistant to antimicrobials is a major challenge that leads to high morbidity and mortality rates and increased time and cost with hospitalization

  • While S. aureus ATCC 29213 and ATCC 6538 were susceptible to all tested antibacterials, S. aureus ATCC 33591 was resistant to all antibacterial agents, except to trimethoprim, confirming a MRSA phenotype

  • Echinocandins are noncompetitive inhibitors of b-1-3-glucan synthase, an enzyme critical to the synthesis of b-1-3-glucan, which is a major component of the fungal cell wall and extracellular matrix (ECM) from C. albicans biofilms

Read more

Summary

Introduction

IMPORTANCE Infections by microorganisms resistant to antimicrobials is a major challenge that leads to high morbidity and mortality rates and increased time and cost with hospitalization. About 80% of infections are associated with biofilms by single or mixed species that can be formed on invasive medical devices, e.g., catheter, and are considered a dissemination source. There are several studies evaluating treatments for polymicrobial infections associated or not with biofilms, there is still no consensus on an effective antimicrobial therapy to combat the coinfection by bacteria and fungi. Polymicrobial infections caused by bacteria and fungi are recognized with increasing frequency in medical settings [1]. In this regard, Candida albicans and Staphylococcus aureus are the most common fungal and bacterial pathogens isolated from bloodstream coinfections worldwide [2, 3]. Combating single/ mixed biofilms is considered a challenge for both researchers and clinicians

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call