Abstract

Bcl-2 family proteins and ICE/CED-3 family proteases (caspases) are regarded as the basic regulators of apoptotic cell death. They are evolutionarily conserved and implicated in a variety of apoptosis. However, the precise mechanism by which these two families interact to regulate cell death is not yet known. In this study, we found that the overexpression of the Bcl-2 family member Bax induced apoptotic cell death in COS-7 cells through the activation of CPP32 (caspase-3)-like proteases that cleaved the DEVD tetrapeptide. This apoptotic cell death was suppressed by the viral proteins CrmA and p35, as well as by the chemically synthesized caspase inhibitors Z-Asp-CH2-DCB and zVAD-fmk. We also found that the Bax-induced apoptosis of COS-7 cells was suppressed by Bcl-xL and Bcl-2, though both Bcl-xL and Bcl-2 similarly prevented etoposide-induced apoptosis in COS-7 cells. In addition, Bcl-xL inhibited the activation of caspase-3-like proteases accompanying Bax-induced COS-7 cell death but Bcl-2 did not. These results indicate that the caspase activation is essential for Bax-induced apoptosis, and that the ability of Bcl-2 and Bcl-xL to prevent the Bax-induced caspase activation and apoptosis in COS-7 cells could be differentially regulated. Our results also suggest that Bcl-2 family proteins function upstream of caspase activation and control apoptosis through the regulation of caspase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call