Abstract

Spinal and bulbar muscular atrophy (SBMA) is one of a group of human inherited neurodegenerative diseases caused by polyglutamine expansion. There is increasing evidence that generation of truncated proteins containing an expanded polyglutamine tract may be an important step in the pathogenesis of these disorders. We have previously demonstrated that the SBMA gene product, the androgen receptor (AR) protein, is toxic when truncated. We now report thatin vitrotranslated full-length AR proteins containing different sized polyglutamine repeats (24, 65 and 97 repeats, respectively) are specifically cleaved by recombinant caspase-3, liberating a polyglutamine containing fragment, and that the susceptibility to cleavage is polyglutamine repeat length-dependent. These findings suggest that AR protein is one of the “death substrates” cleaved by caspase-3 and that caspase-3 might be involved in the pathogenesis of SBMA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.