Abstract
Programmed cell death has been traditionally related with caspase activation. However, it is now accepted that caspase-independent forms of programmed cell death also regulate cell death. In chronic lymphocytic leukemia, CD47 ligation induces one of these alternative forms of cell death: type III programmed cell death. This poorly understood process is characterized by cytoplasmic hallmarks, such as mitochondrial damage. To gain insights into the molecular pathways regulating type III programmed cell death in chronic lymphocytic leukemia, we performed extensive biochemical and cell biology assessments. After CD47 triggering, purified B-cells from 20 patients with chronic lymphocytic leukemia were studied by flow cytometry, immunofluorescence and three-dimensional imaging, immunoblotting, electron microscopy, and fibrillar/globular actin measurements. Finally, we subjected CD47-treated chronic lymphocytic leukemia cells to a phagocytosis assay. We first confirmed that induction of type III programmed cell death is an efficient means of triggering cell death in chronic lymphocytic leukemia. Further, we demonstrated that the signaling events induced by CD47 ligation provoked a reduction in cell size. This alteration is related to F-actin disruption, as the two other cytoskeleton networks, microtubules and intermediate filaments, remain undisturbed in type III programmed cell death. Strikingly, we revealed that the pharmacological modulation of F-actin dynamics regulated this type of death. Finally, our data delineated a new programmed cell death pathway in chronic lymphocytic leukemia initiated by CD47 triggering, and followed by serine protease activation, F-actin rearrangement, mitochondrial damage, phosphatidylserine exposure, and cell clearance. Our work reveals a key molecular tool in the modulation of cell death in chronic lymphocytic leukemia: F-actin. By assessing the regulation of F-actin and type III programmed cell death, this analysis provides new options for destroying chronic lymphocytic leukemia cells, such as a combination of therapies based on apoptosis regulators (e.g., caspases, Bcl-2, Bax) along with alternative therapies based on type III death effectors (e.g., F-actin).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.