Abstract
Little is known regarding molecular markers in head and neck squamous cell carcinoma (HNSCC) that predict responsiveness to different therapeutic regimens or predict HNSCC progression. Mutations in procaspase-8 occur in 9% of HNSCC primary tumors, but the functional consequences of these mutations are poorly understood. In this study, we examined the impact of four, representative, HNSCC-associated procaspase-8 mutations on activation of the extrinsic apoptosis pathway, as well as cellular migration and invasion, and in vivo tumor growth. All four mutant proteins acted to potently inhibit activation of apoptosis following treatment with TRAIL or agonistic anti-Fas. In contrast to wild-type procaspase-8, the mutant proteins were not recruited to FADD following treatment with TRAIL or anti-Fas, but may be constitutively bound by FADD. Three of the four procaspase-8 mutants promoted enhanced cellular migration and invasion through matrigel, relative to that seen with the wild-type procaspase-8 protein. Procaspase-8 mutation also stimulated the growth of HNSCC xenograft tumors. These findings indicate that HNSCC-associated procaspase-8 mutations inhibit activation of the extrinsic apoptosis pathway and are likely to represent markers for resistance to therapeutic regimens incorporating death receptor activators. Moreover, procaspase-8 mutations may serve as markers of HNSCC tumor progression, as exemplified by enhanced migration, invasion, and tumor growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Molecular Oncology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.