Abstract

The noncanonical inflammasome is a signalling complex critical for cell defence against cytosolic Gram-negative bacteria. A key step in the human noncanonical inflammasome pathway involves unleashing the proteolytic activity of caspase-4 within this complex. Caspase-4 induces inflammatory responses by cleaving gasdermin-D (GSDMD) to initiate pyroptosis; however, the molecular mechanisms that activate caspase-4 and govern its capacity to cleave substrates remain poorly defined. Caspase-11, the murine counterpart of caspase-4, acquires protease activity within the noncanonical inflammasome by forming a dimer that self-cleaves at D285 to cleave GSDMD. These cleavage events trigger signalling via the NLRP3-ASC-caspase-1 axis, leading to downstream cleavage of the pro-IL-1β cytokine precursor. Here, we show that caspase-4 first dimerises then self-cleaves at two sites-D270 and D289-in the interdomain linker to acquire full proteolytic activity, cleave GSDMD, and induce cell death. Surprisingly, caspase-4 dimerisation and self-cleavage at D289 generate a caspase-4 p34/p9 protease species that directly cleaves pro-IL-1β, resulting in its maturation and secretion independently of the NLRP3 inflammasome in primary human myeloid and epithelial cells. Our study thus elucidates the key molecular events that underpin signalling by the caspase-4 inflammasome and identifies IL-1β as a natural substrate of caspase-4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.