Abstract
Stallion-to-stallion variability in the quality of cryopreserved ejaculates postthaw affects the commercial acceptability of frozen semen and thus is a major constraint for the equine industry. In recent years, the molecular mechanisms associated with sperm damage during cryopreservation have become better understood. Identification of the freezability of the ejaculates before the freezing process is initiated will have a major impact on the equine industry. We studied three markers of oxidative stress in sperm, including 8-iso-PGF2alpha, 8-OH guanosine, and 4-hydroxynonenal (4-HNE); the presence of active caspase 3; and their changes after sperm cryopreservation. Although 4-HNE levels increased after cryopreservation (from 7% to 33%, P < 0.001), 8OH-guanosine and 8-ISO-PGF2alpha levels decreased after cryopreservation (from 130 to 35 arbitrary fluorescence units, P < 0.01, and from 1280 to 1233, P < 0.01, respectively). Postthaw sperm quality was classified as poor, average, or good using the 25th and 75th percentiles of all assays of sperm quality studied (motility, velocity, membrane functionality, and thiol content) as thresholds. Using these values, a sperm postthaw quality index was proposed. Receiver operating characteristic curves and the Youden J statistic were used to investigate the value of the measured parameters in fresh sperm as predictors of potential freezability. Using these techniques, we identified markers of bad freezers (percentages of caspase 3-positive dead sperm [area under the curve (AUC) = 0.820, P < 0.05] and percentages of caspase 3- and 4-HNE-positive sperm [AUC = 0.872, P < 0.05]) and good freezers (percentages of caspase 3-negative live sperm [AUC = 0.815, P < 0.05], percentages of live sperm with high thiol content [AUC = 0.907, P < 0.01], and percentages of 8-ISO-PGF2alpha-positive sperm [AUC = 0.900, P < 0.01]. Moreover, we described for the first time the presence of 8-ISO-PGF2alpha in stallion spermatozoa and revealed the importance of considering different markers of oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.