Abstract

BackgroundEpidemiological studies have found that prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with increased risk for neural tube defects (NTDs). Aberrant DNA methylation, excessive apoptosis, and oxidative stress have been implied as the mechanism underlying the association between PAH exposure and NTDs, respectively. However, the role of DNA methylation aberration of apoptotic initiator CASP8 (caspase-8, apoptosis-related cysteine peptidase) in the formation of NTDs in association with PAH exposure is not known. By combining a case–control study and mouse model, we aimed to explore the full spectrum of the links from PAH exposure, oxidative stress, CASP8 methylation change, caspase-8 activation, apoptosis, to NTD formation.ResultsHypomethylation of CASP8 promoter was noticed in the microarray profiled by Infinium HumanMethylation450 BeadChip using neural tissues from 10 terminated NTD fetuses and 8 terminated non-malformed fetuses (14 CpG sites, with β difference ranging between 8.8 and 26.3%), and was validated in a larger case–control sample performed with neural tissues from 80 NTD cases and 32 non-malformed fetuses, using the Sequenom MassARRAY system (7 CpG sites). Hypomethylation of CASP8 was a risk factor for NTDs (aOR = 1.11; 95% CI, 1.05–1.17) based on the logistic regression model. According to Pearson’s correlation, methylation levels of CASP8 were inversely correlated with PAH concentrations in maternal serum and with oxidative stress markers in fetal neural tissues (p < 0.05). In the animal study, increased NTD rates (13.5% frequency), Casp8 hypomethylation, caspase-8 upregulation, increased caspase-8 cleavage, and excessive apoptosis were found in mouse embryos cultured with benz(a)pyrene (BaP) in vitro. Antioxidant N-acetyl-L-cysteine (NAC) and BaP co-treatment attenuated the changes found in BaP treatment group.ConclusionsHypomethylation of Casp8 promoter is associated with the formation of NTDs, and Casp8 hypomethylation may be induced by oxidative stress that resulted from exposure to PAHs.

Highlights

  • Neural tube defects (NTDs) are a group of severe congenital malformations of the central nervous system resulting from incomplete closure of the neural tube during early embryogenesis [1]

  • A total of 26 CpG sites in CASP8 were detected with the microarray, of which 22 were more hypomethylated in neural tube defects (NTDs) cases compared to controls

  • Validation of CASP8 methylation in a larger sample In the validation stage, we examined the methylation status of CpG sites in the promoter region of CASP8 identified in the discovery stage using Sequenom EpiTYPER in 80 NTD cases and 32 controls

Read more

Summary

Introduction

Neural tube defects (NTDs) are a group of severe congenital malformations of the central nervous system resulting from incomplete closure of the neural tube during early embryogenesis [1]. The activation of aspartate-specific cysteine protease (caspase)-8 acts as an initiator in the extrinsic apoptosis pathway which is initiated upon activation of death receptors [15] Both studies in human and mice have revealed that levels of cleaved caspase-8 are significantly higher in neural tissue of NTD cases relative to controls [13, 16]. We have identified increased levels of apoptotic cells and cleaved caspase-8 in the neural tissue of NTD cases, and the percentage of apoptotic cells in fetal neural tissue was positively correlated with the concentrations of PAHs in maternal serum [9, 13] It remains unknown whether excessive apoptosis is caused by exposure to PAHs via caspase-8 dysregulation. By combining a case–control study and mouse model, we aimed to explore the full spectrum of the links from PAH exposure, oxidative stress, CASP8 methylation change, caspase-8 activation, apoptosis, to NTD formation

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call