Abstract

Background and objectiveAutomated detection and quantification of carotid artery stenosis is a crucial task in establishing a computer-aided diagnostic system for brain diseases. Digital subtraction angiography (DSA) is known as the "gold standard" for carotid stenosis diagnosis. It is commonly used to identify carotid artery stenosis and measure morphological indices of the stenosis. However, using deep learning to detect stenosis based on DSA images and further quantitatively predicting the morphological indices remain a challenge due the absence of prior work. In this paper, we propose a quantitative method for predicting morphological indices of carotid stenosis. MethodsOur method adopts a two-stage pipeline, first locating regions suitable for predicting morphological indices by object detection model, and then using a regression model to predict indices. A novel Carotid Artery Stenosis Matching (CASMatching) strategy is introduced into the object detection to model the matching relationship between a stenosis and multiple normal vessel segments. The proposed Match-ness branch predicts a Match-ness score for each normal vessel segment to indicate the degree of matching to the stenosis. A novel Direction Distance-IoU (2DIoU) loss based on the Distance-IoU loss is proposed to make the model focused more on the bounding box regression in the direction of vessel extension. After detection, the normal vessel segment with the highest Match-ness score and the stenosis are intercepted from the original image, then fed into a regression model to predict morphological indices and calculate the degree of stenosis. ResultsOur method is trained and evaluated on a dataset collected from three different manufacturers' monoplane X-ray systems. The results show that the proposed components in the object detector substantially improve the detection performance of normal vascular segments. For the prediction of morphological indices, our model achieves Mean Absolute Error of 0.378, 0.221, 4.9 on reference vessel diameter (RVD), minimum lumen diameter (MLD) and stenosis degree. ConclusionsOur method can precisely localize the carotid stenosis and the normal vessel segment suitable for predicting RVD of the stenosis, and further achieve accurate quantification, providing a novel solution for the quantification of carotid artery stenosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call