Abstract

CaSm (cancer-associated Sm-like) was originally identified based on elevated expression in pancreatic cancer and in several cancer-derived cell lines. It encodes a 133-amino acid protein that contains two Sm motifs found in the common snRNP proteins and the LSm (like-Sm) family of proteins. Lung tumors and mesotheliomas express high levels of CaSm mRNA and protein compared with adjacent nontumor and normal lung tissue, measured by immunohistochemistry, qRT-PCR, and Western blot analyses. In addition, several human lung cancer- and mesothelioma-derived cell lines have elevated CaSm expression. Two cell lines, transfected with and expressing antisense CaSm RNA, demonstrate altered transformed phenotypes, reducing their ability to form colonies in soft agar and tumors in SCID mice. Furthermore, RNAi-mediated reduction of CaSm RNA and protein is associated with inhibition of cellular growth. These data support the model that elevated CaSm expression in epithelial tissue contributes to the transformed state. Cell lines expressing exogenous CaSm also exhibit transformed characteristics, including increased anchorage-independent colony formation and tumor growth. Thus, the results of loss of function and gain of function studies presented both indicate that CaSm functions as an oncogene in the promotion of cellular transformation and cancer progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.