Abstract

Protest event analysis is an important method for the study of collective action and social movements and typically draws on traditional media reports as the data source. We introduce collective action from social media (CASM)—a system that uses convolutional neural networks on image data and recurrent neural networks with long short-term memory on text data in a two-stage classifier to identify social media posts about offline collective action. We implement CASM on Chinese social media data and identify more than 100,000 collective action events from 2010 to 2017 (CASM-China). We evaluate the performance of CASM through cross-validation, out-of-sample validation, and comparisons with other protest data sets. We assess the effect of online censorship and find it does not substantially limit our identification of events. Compared to other protest data sets, CASM-China identifies relatively more rural, land-related protests and relatively few collective action events related to ethnic and religious conflict.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.