Abstract

We investigate the thermal Casimir-Polder (CP) potential of $^{87}\mathrm{Rb}$ atoms in Rydberg $nS$-states near single- and double-layer graphene, and briefly look into the lifetimes near graphene-hexagonal boron nitride (hBN) multilayered structures. The dependence of the CP potential on parameters such as atom-surface distance, temperature, principal quantum number $n$, and graphene Fermi energy are explored. Through large-scale numerical simulations, we show that, in the nonretarded regime, the CP potential is dominated by the nonresonant and evanescent-wave terms which are monotonic, and that, in the retarded regime, the CP potential exhibits spatial oscillations. We identify that the most important contributions to the resonant component of the CP potential come from the $nS\text{\ensuremath{-}}nP$ and $nS\text{\ensuremath{-}}(n\ensuremath{-}1)P$ transitions. Scaling of the CP potential as a function of the principal quantum number and temperature is obtained. A heterostructure comprising hexagonal boron nitride layers sandwiched between two graphene layers is also studied. When the boron nitride layer is sufficiently thin, the CP potential can be weakened by changing the Fermi energy of the top graphene layer. Our study provides insights for understanding and controlling CP potentials experienced by Rydberg atoms near single- and multilayer graphene-based van der Waals heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.