Abstract

The properties of fluctuation induced interactions like van der Waals and Casimir-Lifshitz forces are of interest in a plethora of fields ranging from biophysics to nanotechnology. Here we describe a general approach to compute these interactions. It is based on a combination of methods from statistical physics and scattering theory. We showcase how it is exquisitely suited to analyze a variety of previously unexplored phenomena. Examples are given to show how the interplay of geometry and material properties helps to understand and control these forces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.