Abstract

We investigate two effects that lead to a surprising increase in the calculated Casimir-Lifshitz torque between anisotropic, planar, semi-infinite slabs. Retardation effects, which account for the finite speed of light, are generally assumed to decrease the strength of Casimir-Lifshitz interactions. However, the nonretarded approximation underestimates the Casimir-Lifshitz torque at small separations by as much as an order of magnitude. Also, Casimir-Lifshitz forces are typically weakened with the insertion of an intervening dielectric. However, a dielectric medium can increase the short-range Casimir-Lifshitz torque by as much as a factor of 2. The combined effects of retardation and an intervening dielectric dramatically enhance the Casimir-Lifshitz torque in the experimentally accessible regime and should not be neglected in calculation or experimental design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.