Abstract

We study the Casimir force between two pistons under different boundary conditions inside an infinite cylinder with arbitrary cross section. It is found that the attractive or repulsive character of the Casimir force for a scalar field is determined only by the boundary condition along the longitudinal direction and is independent of the cross section, transverse boundary conditions and the mass of the field. Under symmetric Dirichlet–Dirichlet, Neumann–Neumann and periodic longitudinal boundary conditions the Casimir force is always attractive, but is repulsive under non-symmetric Dirichlet–Neumann and anti-periodic longitudinal boundary conditions. The Casimir force of the electromagnetic field in an ideal conductive piston is also investigated. This force is always attractive regardless of the shape of the cross section and the transverse boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.