Abstract

The aim of the measurement series is to study the Casimir force, specifically the effects of different materials and geometries. The art of measuring sub-nano Newton forces has been engineered to a great extent in the material sciences, especially for the atomic force microscope. In today's scanning microscope technologies there are several common methods used to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with soft silicon cantilevers, there are a large number of reports from university groups on the use of quartz tuning forks to get high resolution AFM pictures, to measure shear forces or to create new force sensors. The quartz tuning fork based force sensor has a number of advantages over the silicon cantilever, but also has some disadvantages. In this report the method based on quartz tuning forks is described with respect to their usability for Casimir force measurements and compared with other successful techniques. Furthermore, a design for Casimir force measurements that was set up in Berlin will be described and practical experimental aspects will be discussed. A status report on the Casimir experiments in Berlin will be given, including the experimental setup. In order to study the details of the Casimir effect the apparatus and active surfaces have to be improved further. The surfaces have to be flatter and cleaner. For better resolution, cantilevers and tuning forks with a low spring constant have to be employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call