Abstract

The possibility of repulsive Casimir forces between small metal spheres and a dielectric half-space is discussed. We treat a model in which the spheres have a dielectric function given by the Drude model, and the radius of the sphere is small compared to the corresponding plasma wavelength. The half-space is also described by the same model, but with a different plasma frequency. We find that in the retarded limit, the force is quasioscillatory. This leads to the prediction of stable equilibrium points at which the sphere could levitate in the Earth's gravitational field. This seems to lead to the possibility of an experimental test of the model. The effects of finite temperature on the force are also studied, and found to be rather small at room temperature. However, thermally activated transitions between equilibrium points could be significant at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.