Abstract

Abstract We study the effect of the Lorentz violation on the Casimir energy and pressure of a charged Dirac field in a background uniform magnetic field. In the model, the Lorentz violation is parameterized not only by the intensity but also by its direction. We investigate two cases of the direction of violation, namely, time-like and space-like vector cases. We use the boundary condition of the MIT bag model to represent the property of the plates. We show how the Lorentz violation and the magnetic field affect the structure of the Casimir energy and its pressure. We also investigate the weak and strong magnetic field cases with two different limits, heavy and light masses. In addition, we compute the ratio of the influence of the strong magnetic field to that of the weak one for the Casimir energy and its pressure. We find that the strong magnetic field enhances the magnitude of the Casimir energy and its pressure, where the parameter of the intensity of Lorentz violation could scale the plate’s distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.