Abstract

The Casimir effect of an ideal Bose gas trapped in a generic power-law potential and confined between two slabs with Dirichlet, Neumann, and periodic boundary conditions is investigated systematically, based on the grand potential of the ideal Bose gas, the Casimir potential and force are calculated. The scaling function is obtained and discussed. The special cases of free and harmonic potentials are also discussed. It is found that when T⩽Tc (where Tc is the critical temperature of Bose-Einstein condensation), the Casimir force is a power-law decay function; when T>Tc, the Casimir force is an exponential decay function; and when T≫Tc, the Casimir force vanishes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call