Abstract

We discuss the Casimir effect in a small cavity, moving in a circular orbit around an Ellis wormhole. We show that the interplay between the spacetime geometry and the cavity orbital motion gives rise to a distortion in the Casimir energy density, causing a reduction of its absolute value. Quite interestingly, such effect can be observed also when the cavity moves on a circular geodesic (albeit unstable) orbit at the wormhole throat, where a comoving observer becomes locally inertial (namely, the observer’s reference frame reduces to a geodesic, Fermi-Walker transported one). In that respect, the discussed effect appears as a nonlocal quantum effect by means of which some properties of the underlying spacetime geometry, hidden to local classical measurements, can be captured and unveiled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call