Abstract

RNA-sequencing (RNA-seq) can generate millions of reads to provide clues for analyzing novel or abnormal alternative splicing (AS) events in cells. However, current methods for exploring AS events are still far from being satisfactory. Here, we present Comprehensive AS Hunting (CASH), which constructs comprehensive splice sites including known and novel AS sites in cells, and identifies differentially AS events between cells. We illuminated the versatility of CASH on RNA-seq data from a wide range of species and also on simulated in silico data, validated the advantages of CASH over other AS predictors and exhibited novel differentially AS events. Moreover, we used CASH to identify SRSF10-regulated AS events and investigated the evolution of SRSF10-regulated splicing. The results showed that SRSF10-regulated splicing events are highly evolvable from chickens, mice to humans. However, SRSF10-regulated splicing model was observed to be immutable, in which SRSF10 binding to cassette exon promotes exon inclusion while binding to downstream exon induces exon skipping. Altogether, CASH can significantly improve the detection of AS events and facilitate the study of AS regulation and function in cells; the SRSF10 data first demonstrate a flexibility of SRSF10 with their regulated splicing events but an immutability of SRSF10-regulated splicing model to produce opposite AS outcomes in vertebrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.