Abstract

Understanding in-network information diffusion is a fundamental problem in many applications and one of the primary challenges is to predict the information cascade size. Most of the existing models rely either on hypothesized point process (e.g., Poisson and Hawkes processes), or simply predict the information propagation via deep neural networks. However, they fail to simultaneously capture the underlying global and local structures of a cascade and the propagation uncertainty in the diffusion, which may result in unsatisfactory prediction performance. To address these, in this work we propose a novel probabilistic cascade prediction framework <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CasFlow</i> : Hierarchical Cascade Normalizing Flows. CasFlow allows a non-linear information diffusion inference and models the information diffusion process by learning the latent representation of both the structural and temporal information. It is a pattern-agnostic model leveraging normalizing flows to learn the node-level and cascade-level latent factors in an unsupervised manner. In addition, CasFlow is capable of capturing both the cascade representation uncertainty and node infection uncertainty, while enabling hierarchical pattern learning of information diffusion. Extensive experiments conducted on real-world datasets demonstrate that CasFlow reduces the prediction error to 21.0% by only observing half an hour of cascades, compared to state-of-the-art approaches, while also enabling model interpretability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.