Abstract
Photovoltaic (PV) systems are weather-dependent. A solar eclipse causes significant changes in these parameters, thereby impacting PV generation profile, performance, and power quality of larger grid, where they connect to. This study presents a case study to evaluate the impacts of the solar eclipse of 21 August 2017, on two real-world grid-tied PV systems (1.4 MW and 355 kW) in Miami and Daytona, Florida, the feeders they are connected to, and the management areas they belong to. Four types of analyses are conducted to obtain a comprehensive picture of the impacts using 1 min PV generation data, hourly weather data, real feeder parameters, and daily reliability data. These analyses include: individual PV system performance measurement using power performance index; power quality analysis at the point of interconnection; a study on the operation of voltage regulating devices on the feeders during eclipse peak using an IEEE 8500 test case distribution feeder; and reliability study involving a multilayer perceptron framework for forecasting system reliability of the management areas. Results from this study provide a unique insight into how solar eclipses impact the behaviour of PV systems and the grid, which would be of concern to electric utilities in future high penetration scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.