Abstract

The wind-induced vibration of long-span bridges mainly manifests as flutter, galloping, vortex-induced vibrations (VIVs), buffeting, etc. Among these, VIVs cause vertical or torsional single-mode vibrations of the main girder; these affect the comfort of drivers or pedestrians on the bridge when vortex-induced resonance occurs. In this study, field measurements, numerical simulations, and wind tunnel tests were used to systematically investigate triggering mechanism during the sudden first and secondary VIV phenomena of Humen Bridge, along with the structural mode and damping characteristics and VIV aerodynamic mitigation effects, etc. The results show that the sudden first VIV was caused by the temporary installation of water-filled barriers, as these changed the aerodynamic configuration of the box girder; the decisive removal of these water-filled barriers can effectively suppress the VIV amplitude to some extent. The succedent secondary VIV was caused by the reduction of the structural damping; therefore, aerodynamic control and damping control measures are proposed. The aerodynamic control measures include the implementation of suppressor plates on the top of handrails and removal of the maintenance rails under the girder, whereas the structural damping control measures involve the successive installation of tuned-mass damper (TMD) to compensate for the reduced damping owing to the former large-amplitude VIV performance. After verification based on reduced-scale model wind tunnel tests, the aerodynamic control measures and structural damping control measures are successfully adopted and applied to Humen Bridge. These measures are shown to effectively suppress VIVs, as confirmed via succedent long-term on-the-spot observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call