Abstract
Spectrum sensing is an essential component in cognitive radios (CR). Machine learning (ML) algorithms are powerful techniques for designing a promising spectrum sensing model. In this work, the supervised ML algorithms, support vector machine (SVM), k-nearest neighbor (kNN), and decision tree (DT) are applied to detect the existence of primary users (PU) over the TV band. Moreover, the Principal Component Analysis (PCA) is incorporated to speed up the learning of the classifiers. Furthermore, the ensemble classification-based approach is employed to enhance the classifier predictivity and performance. Simulation results have shown that the highest performance is achieved by the ensemble classifier. Moreover, simulation results have shown that employing PCA reduces the duration of training while maintaining the performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.