Abstract

Unique observational features of a convective cluster, occurred on 12-Sept-2015, over the rain shadow region in the leeward side of Western Ghats have been presented in this study. The synoptic environment had preconditioned the formation of a convergence zone over the study area. Moisture transport from the Arabian Sea was responsible for the moistening in the lower layers. Boundary layer convective thermals contributed to middle level moistening and subsequent onset of the cloud cluster was accompanied by a sudden surge of moist and warm air into the middle troposphere, and subsequent lifting of freezing level (FL) and wet bulb temperature zero (WBT0) levels. Sudden changes in the FL and WBT0 levels in association with the gust front prior to the initiation of the cloud system has been documented with high-resolution measurements using microwave radiometer and wind profiler. Thermodynamical parameters from radiometer illustrate the percussive conditions for formation of the cloud system. The cloud cluster had resulted in 25.50 mm rainfall, attributing to ~ 91% of convective rain. Intense fall velocity (10–12 ms−1) was noted up to ~ 7 km during the convective rain and the fall velocity was reduced to ~ 7 ms−1 (below the melting layer) during the stratiform counterpart. The cloud system was forecasted using WRF model (version 3.6.1), which was reproduced reasonably well as in the observations and the model output has been analyzed to understand the morphology of the system. The features such as formation of a cold pool, initiation of convective rainfall from the system were well forecasted by the model. Microphysical characteristics of the cloud cluster have also been examined. Riming was the dominant microphysical process within the convective regime. A major contribution to precipitation was from melting of ice hydrometeors especially graupel and snow was noted. Deep warm layer and associated production of supercooled liquid by the lifting of liquid water above the freezing level in updrafts exceeding 15 ms−1 was important for the production of a mixed-phase cloud system. Vapor deposition and aggregation process was noted in the stratiform/anvil counterpart, which also contained mixed phase hydrometeors, primarily of snow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call