Abstract

AbstractThe Ross Ice Shelf airstream (RAS) is a barrier parallel flow along the base of the Transantarctic Mountains. Previous research has hypothesized that a combination of katabatic flow, barrier winds, and mesoscale and synoptic-scale cyclones drive the RAS. Within the RAS, an area of maximum wind speed is located to the northwest of the protruding Prince Olav Mountains. In this region, the Sabrina automatic weather station (AWS) observed a September 2009 high wind event with wind speeds in excess of 20 m s−1 for nearly 35 h. The following case study uses in situ AWS observations and output from the Antarctic Mesoscale Prediction System to demonstrate that the strong wind speeds during this event were caused by a combination of various forcing mechanisms, including katabatic winds, barrier winds, a surface mesocyclone over the Ross Ice Shelf, an upper-level ridge over the southern tip of the Ross Ice Shelf, and topographic influences from the Prince Olav Mountains. These forcing mechanisms induced a barrier wind corner jet to the northwest of the Prince Olav Mountains, explaining the maximum wind speeds observed in this region. The RAS wind speeds were strong enough to induce two additional barrier wind corner jets to the northwest of the Prince Olav Mountains, resulting in a triple barrier wind corner jet along the base of the Transantarctic Mountains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.