Abstract

Resistant mufflers are commonly used in the wide band noise control of the exhaust of tractor internal combustion engines due to their simple structure, broadband frequency performance and long service life. In this paper, a corrugated perforated pipe muffler was proposed based on an improved design of a straight-through perforated pipe muffler to reduce the exhaust noise of internal combustion engines. The acoustic attenuation performance of the corrugated perforated tube muffler under the action of nonuniform flow and a temperature gradient was predicted by using the one-way flow-acoustic coupling method, which combines computational fluid dynamics and the acoustic finite element method. The pressure loss and self-noise of the corrugated perforated tube muffler were compared with those of the straight-through perforated tube muffler. The influence of the structural parameters of the corrugated perforated tube mufflers on the transmission loss was analyzed. The significance level of the perforation diameter, peak height, distance between adjacent peaks, and peak width on the transmission loss of the corrugated perforated tube muffler was studied by multiple linear regression analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call