Abstract

A key requirement for modern large scale neuromorphic systems is the ability to detect and diagnose faults and to explore self-correction strategies. In particular, to perform this under area-constraints which meet scalability requirements of large neuromorphic systems. A bio-inspired online fault detection and self-correction mechanism for neuro-inspired PID controllers is presented in this paper. This strategy employs a fault detection unit for online testing of the PID controller; uses a fault detection manager to perform the detection procedure across multiple controllers, and a controller selection mechanism to select an available fault-free controller to provide a corrective step in restoring system functionality. The novelty of the proposed work is that the fault detection method, using synapse models with excitatory and inhibitory responses, is applied to a robotic spike-based PID controller. The results are presented for robotic motor controllers and show that the proposed bio-inspired self-detection and self-correction strategy can detect faults and re-allocate resources to restore the controller's functionality. In particular, the case study demonstrates the compactness (∼1.4% area overhead) of the fault detection mechanism for large scale robotic controllers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.