Abstract

Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. Therefore, various conservation methods have been developed for the consolidation and protection of porous building materials exposed to the salt attack. As any successful treatment of salt damage requires a multidisciplinary attitude, many different factors such as salt solution transport and crystallization, presence and origin of salts in masonry, and salt-induced deterioration are to be taken into account. The importance of pre-treatment investigations is discussed as well; in a combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options.Another important cause of building pathologies in buildings is the rising damp and this phenomenon it is particularly more severe with the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure. At Laboratory of Building Physics (LFC-FEUP) a wall base hygro-regulated ventilation system was developed. This system patented, HUMIVENT, has been submitted to laboratorial monitoring and to in situ validation and a numerical simplified model was developed to facilitate the practical application. Having in mind the practical application of scientific and technological knowledge from Building Physics to practice, this paper presents the design of the system (geometry, ventilation rate and hygrothermal device), the detailing and technical specification of its different components and information about the implementation in three types of buildings: a church, a museum and a residential building.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call