Abstract

The femoral bifurcation is typically composed of a common femoral artery that bifurcates into the superficial (SFA) and deep (DFA) femoral arteries, with the lateral circumflex femoral artery (LCFA) branching distal to the origin of the DFA. We report a unique case of a 22-yr-old woman with a femoral "trifurcation," where the origin of the LCFA coincides with the origin of the DFA, resulting in a true three-way branching of the common femoral artery. We characterized the complex hemodynamics of the trifurcation region with ultrasound vector flow imaging at rest, and during 80 mmHg cuff compression of the calf to induce greater oscillatory blood flow. At rest, a clear trifurcation is observed with color Doppler imaging, while vector flow imaging further revealed a large area of flow circulation proximal to the LCFA and DFA. Cuff compression reduced SFA blood flow to 0 cm3/min, characterized by almost constant retrograde blood flow throughout diastole. When visualized with vector flow imaging, diastolic retrograde blood flow from the SFA appeared to reperfuse the DFA and LCFA during late systole, eliminating the retrograde flow component and providing a secondary source of anterograde blood flow to the thigh. In a rare case of a femoral trifurcation, we demonstrate blood recirculation patterns at rest, as well as collateral retrograde blood flow redistribution during lower limb compression. While it is unknown whether these trifurcation findings extend to typical bifurcations, it is evident that advanced methods of blood flow characterization are necessary to visualize and study complex vascular regions.NEW & NOTEWORTHY A femoral "trifurcation" is observed when the lateral circumflex femoral artery has an atypical proximal origin, branching at the same level as the superficial and deep femoral arteries. Ultrasound vector flow imaging at 750 fps was able to reveal substantial blood recirculation within the trifurcation at rest, as well as unique redistribution of blood flow between downstream branches during external cuff manipulation of retrograde flow, indicating novel ways in which diastolic blood flow is controlled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call